421 research outputs found

    Temperature memory and resistive glassy behaviors of a perovskite manganite

    Full text link
    This paper reports the observations of long-time relaxation, aging, and temperature memory behaviors of resistance and magnetization in the ferromagnetic state of a polycrystalline La0.7Ca0.3Mn0.925Ti0.075O3 compound. The observed glassy dynamics of the electrical transport appears to be magnetically originated and has a very close association with the magnetic glassiness of the sample. Phase separation and strong correlation between magnetic interactions and electronic conduction play the essential roles in producing such a resistive glassiness. We explain the observed effects in terms of a coexistence of two competing thermomagnetic processes, domain growth and magnetic freezing, and propose that hole-doped perovskite manganites can be considered as "resistive glasses".Comment: Submitted to PR

    A simple view of linguistic complexity

    Get PDF
    Although a growing number of second language acquisition (SLA) studies take linguistic complexity as a dependent variable, the term is still poorly defined and often used with different meanings, thus posing serious problems for research synthesis and knowledge accumulation. This article proposes a simple, coherent view of the construct, which is defined in a purely structural way, i.e. the complexity directly arising from the number of linguistic elements and their interrelationships. Issues of cognitive cost (difficulty) or developmental dynamics (acquisition) are explicitly excluded from this theoretical definition and its operationalization. The article discusses how the complexity of an interlanguage system can be assessed based on the limited samples SLA researchers usually work with. For the areas of morphology, syntax and the lexicon, some measures are proposed which are coherent with the purely structural view advocated, and issues related to their operationalization are critically scrutinized

    Dynamical Mean-Field Solution for a Model of Metal-Insulator Transitions in Moderately Doped Manganites

    Get PDF
    We propose that a specific spatial configuration of lattice sites that energetically favor {\it 3+} or {\it 4+} Mn ions in moderately doped manganites constitutes approximately a spatially random two-energy-level system. Such an effect results in a mechanism of metal-insulator transitions that appears to be different from both the Anderson transition and the Mott-Hubbard transition. Correspondingly, a disordered Kondo lattice model is put forward, whose dynamical mean-field solution agrees reasonably with experiments.Comment: 4 pages, 2 eps figures, Revtex. First submitted to PRL on May 16, 199

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Conductance as a Function of the Temperature in the Double Exchange Model

    Full text link
    We have used the Kubo formula to calculate the temperature dependence of the electrical conductance of the double exchange Hamiltonian. We average the conductance over an statistical ensemble of clusters, which are obtained by performing Monte Carlo simulations on the classical spin orientation of the double exchange Hamiltonian. We find that for electron concentrations bigger than 0.1, the system is metallic at all temperatures. In particular it is not observed any change in the temperature dependence of the resistivity near the magnetical critical temperature. The calculated resistivity near TcT_c is around ten times smaller than the experimental value. We conclude that the double exchange model is not able to explain the metal to insulator transition which experimentally occurs at temperatures near the magnetic critical temperature.Comment: 6 pages, 5 figures included in the tex

    Charge Localization in Disordered Colossal-Magnetoresistance Manganites

    Full text link
    The metallic or insulating nature of the paramagnetic phase of the colossal-magnetoresistance manganites is investigated via a double exchange Hamiltonian with diagonal disorder. Mobility edge trajectory is determined with the transfer matrix method. Density of states calculations indicate that random hopping alone is not sufficient to induce Anderson localization at the Fermi level with 20-30% doping. We argue that the metal-insulator transtion is likely due to the formation of localized polarons from nonuniform extended states as the effective band width is reduced by random hoppings and electron-electron interactions.Comment: 4 pages, RevTex. 4 Figures include

    Multi-phonon Resonant Raman Scattering Predicted in LaMnO3 from the Franck-Condon Process via Self-Trapped Excitons

    Full text link
    Resonant behavior of the Raman process is predicted when the laser frequency is close to the orbital excitation energy of LaMnO3 at 2 eV. The incident photon creates a vibrationally excited self-trapped ``orbiton'' state from the orbitally-ordered Jahn-Teller (JT) ground state. Trapping occurs by local oxygen rearrangement. Then the Franck-Condon mechanism activates multiphonon Raman scattering. The amplitude of the nn-phonon process is first order in the electron-phonon coupling gg. The resonance occurs {\it via} a dipole forbidden dd to dd transition. We previously suggested that this transition (also seen in optical reflectivity) becomes allowed because of asymmetric oxygen fluctuations. Here we calculate the magnitude of the corresponding matrix element using local spin-density functional theory. This calculation agrees to better than a factor of two with our previous value extracted from experiment. This allows us to calculate the absolute value of the Raman tensor for multiphonon scattering. Observation of this effect would be a direct confirmation of the importance of the JT electron-phonon term and the presence of self-trapped orbital excitons, or ``orbitons''.Comment: 8 pages and 3 embedded figures. The earlier short version is now replaced by a more complete paper with a slightly different title. This version includes a caculation by density-functional theory of the dipole matrix element for exciting the self-trapped orbital exciton which activates the multiphonon Raman signal

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Optical Conductivity of Manganites: Crossover from Jahn-Teller Small Polaron to Coherent Transport in the Ferromagnetic State

    Full text link
    We report on the optical properties of the hole-doped manganites Nd_{0.7}Sr _{0.3}MnO_{3}, La_{0.7}Ca_{0.3}MnO_{3}, and La_{0.7}Sr_{0.3}MnO_{3}. The low-energy optical conductivity in the paramagnetic-insulating state of these materials is characterized by a broad maximum near 1 eV. This feature shifts to lower energy and grows in optical oscillator strength as the temperature is lowered into the ferromagnetic state. It remains identifiable well below Tc and transforms eventually into a Drude-like response. This optical behavior and the activated transport in the paramagnetic state of these materials are consistent with a Jahn-Teller small polaron. The optical spectra and oscillator strength changes compare well with models that include both double exchange and the dynamic Jahn-Teller effect in the description of the electronic structure.Comment: 27 pages (Latex), 6 figures (PostScript
    corecore